Highly sensitive refractive index sensor based on plastic optical fiber balloon structure

Opt Lett. 2022 Apr 1;47(7):1697-1700. doi: 10.1364/OL.455562.

Abstract

A novel, to the best of our knowledge, design of plastic optical fiber (POF) balloon-based refractive index sensor for the detection of different concentrations of sodium chloride is proposed and experimentally investigated. The experimental characterization supports the finding that the transmission loss is sensitive to the external environment's targeted refractive index changes of the analyte. The proposed sensor achieves a maximum intensity-based sensitivity of 3105 RIU-1, resolution of 3.22 ×10-7, and the figure of merit (FOM) is 326 RIU-1 from 2 to 2.5 Mol/L of the analyte with the chosen refractive index changes at 680 nm for a diameter D = 0.1 cm of the POF balloon structure. Furthermore, a high linear performance of 0.9896 is achieved with good robustness against the fabrication imperfection. The ultra-sensitiveness to the refractive index with a simple demonstration of the POF balloon-based structure has potential applications in the chemical, biological, and food safety sensing fields.

MeSH terms

  • Equipment Design
  • Optical Fibers*
  • Plastics / chemistry
  • Refractometry*

Substances

  • Plastics