Nonvolatile modulation of luminescence in perovskite oxide thin films by ferroelectric gating

Opt Lett. 2022 Apr 1;47(7):1578-1581. doi: 10.1364/OL.451697.

Abstract

Nonvolatile and giant modulation of luminescence can be realized by the ferroelectric gating effect in a Ga3+/Pr3+ co-doped BaTiO3 ultra-thin film epitaxially grown on a [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3 single-crystallized substrate. The change behavior of the emission intensity matches that of the ferroelectric polarization hysteresis loop with a giant enhancement of over 13 times with negative polarization orientation. The interaction of O2- at the O2p orbital in the valence band and Pr3+ with injected holes by the ferroelectric gating effect promotes the formation of excited state O-, Pr4+, or Pr3+q. This ferroelectric gating method can promote the development of controllable photo-, electroluminescent, and other optoelectronic devices for display, sensing, communication, and so on.