Peking geckos (Gekko swinhonis) traversing upward steps: the effect of step height on the transition from horizontal to vertical locomotion

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 May;208(3):421-433. doi: 10.1007/s00359-022-01548-z. Epub 2022 Apr 1.

Abstract

The ability to transition between surfaces (e.g., from the ground to vertical barriers, such as walls, tree trunks, or rock surfaces) is important for the Peking gecko's (Gekko swinhonis Günther 1864) survival. However, quantitative research on gecko's kinematic performance and the effect of obstacle height during transitional locomotion remains scarce. In this study, the transitional locomotion of geckos facing different obstacle heights was assessed. Remarkably, geckos demonstrated a bimodal locomotion ability, as they could climb and jump. Climbing was more common on smaller obstacles and took longer than jumping. The jumping type depended on the obstacle height: when geckos could jump onto the obstacle, the vertical velocity increased with obstacle height; however, geckos jumped from a closer position when the obstacle height exceeded this range and would get attached to the vertical surface. A stability analysis of vertical surface landing using a collision model revealed that geckos can reduce their restraint impulse by increasing the landing angle through limb extension close to the body, consequently dissipating collision energy and reducing their horizontal and vertical velocities. The findings of this study reveal the adaptations evolved by geckos to move in their environments and may have applicability in the robotics field.

Keywords: Gekko swinhonis; Jumping; Landing; Locomotion; Transition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Beijing
  • Biomechanical Phenomena
  • Lizards* / physiology
  • Locomotion / physiology