Widely targeted analysis of metabolomic changes of Cucumis sativus induced by cucurbit chlorotic yellows virus

BMC Plant Biol. 2022 Mar 31;22(1):158. doi: 10.1186/s12870-022-03555-3.

Abstract

Background: Plant metabolites play vital roles in regulating the behavior of herbivore insects. Virus infection can universally alter plant metabolites to manipulate the orientation and feeding behaviors of insect vector, to favor the transmission of virus. Thus, determining the differentially accumulated metabolites of plant upon virus infection could provide insights into understanding how the triple interactions among plant, virus and insect vector happens. Our previous studies have found that vector whitefly Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae) showed different orientation behavior and performance on CCYV-infected and healthy cucumber plants. Cucurbit chlorotic yellows virus (CCYV) is exclusively transmitted by B. tabaci in a semi-persistent mode. In this study, we take the CCYV, B. tabaci and cucumber as a research system to explore the functions of phyto-metabolites in the triple interactions.

Results: A total of 612 metabolites changed upon CCYV infection were monitored. Metabolites mainly enriched in flavonoids, lipids, nucleotides and their derivatives. At 7 days post CCYV inoculation (dpi), the contents of lipids, terpenoids and flavonoids remarkably decreased, while amino acids, nucleotides and their derivatives notably up-accumulated. At 15 dpi, the accumulation of flavonoids were still significantly reduced upon CCYV infection, while lipids, amino acids, nucleotides and derivatives were remarkably enhanced. Most of significantly increased metabolites were lipids (lysophosphatidylethanolamine, LPE; lysophosphatidylcholine, LPC and their isomers). Also, the number of significantly changed metabolites increased with the infection period. However, only a few organic acids and phenolic acids showed difference between CCYV-infected and healthy cucumber plants.

Conclusions: CCYV infection repressed the defensive flavonoids, terpeneoids metabolism but triggered the lipids, amino acids and nucleotides metabolism with the inoculation period. This result suggests that CCYV-infection makes cucumber plants more susceptible for whiteflies attack and CCYV infection. The reduction of defensive comounds and the increase of amino acids may be partially responsible for enhancing feeding preference of whiteflies to CCYV-infected hosts. CCYV may hijacked lipid metabolism for virus replication and assembly.

Keywords: Cucumis sativus; Cucurbit chlorotic yellows virus; Flavonoids; Lipids; Metabolomics.

MeSH terms

  • Animals
  • Crinivirus* / physiology
  • Cucumis sativus*
  • Hemiptera* / physiology
  • Insect Vectors
  • Metabolomics