"Cut-and-paste" method for the rapid prototyping of soft electronics

Sci China Technol Sci. 2019 Feb;62(2):199-208. doi: 10.1007/s11431-018-9400-9. Epub 2019 Jan 16.

Abstract

Unlike wafer-based rigid electronics, soft electronics have many unique advantages including thinness, flexibility, stretchability, conformability, lightweight, large area, as well as low cost. As a result, they have demonstrated many emerging capabilities in healthcare devices, soft robotics, and human-machine interface. Instead of conventional microfabrication, there is an evergrowing interest in the freeform or digital manufacture of soft electronics. This review provides a survey for a cost- and time-effective subtractive manufacturing process called the "cut-and-paste" method. It employs a mechanical cutter plotter to form patterns on various electronically functional membranes such as sheets of metals, functional polymers, and even two-dimensional (2D) materials, supported by a temporary tape. The patterned membranes can then be pasted on soft substrates such as medical tapes or even human skin. This process is completely dry and desktop. It does not involve any rigid wafers and is hence capable of making large-area electronics. The process can be repeated to integrate multiple materials on a single substrate. Integrated circuits (ICs) and rigid components can be added through a "cut-solder-paste" process. Multilayer devices can also be fabricated through lamination. We therefore advocate that the "cut-and-paste" method is a very versatile approach for the rapid prototyping of soft electronics for various applications.

Keywords: 2D materials; cut-and-paste; electronic tattoos; epidermal electronics; subtractive manufacture.