Dynamics of the Brain Functional Network Associated With Subjective Cognitive Decline and Its Relationship to Apolipoprotein E €4 Alleles

Front Aging Neurosci. 2022 Mar 9:14:806032. doi: 10.3389/fnagi.2022.806032. eCollection 2022.

Abstract

The aim of our study was to explore the dynamic functional alterations in the brain in patients with subjective cognitive decline (SCD) and their relationship to apolipoprotein E (APOE) €4 alleles. In total, 95 SCD patients and 49 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Then, the mean time series of 90 cortical or subcortical regions were extracted based on anatomical automatic labeling (AAL) atlas from the preprocessed rs-fMRI data. The static functional connectome (SFC) and dynamic functional connectome (DFC) were constructed and compared using graph theory methods and leading eigenvector dynamics analysis (LEiDA), respectively. The SCD group displayed a shorter lifetime (p = 0.003, false discovery rate corrected) and lower probability (p = 0.009, false discovery rate corrected) than the HC group in a characteristic dynamic functional network mainly involving the bilateral insular and temporal neocortex. No significant differences in the SFC were detected between the two groups. Moreover, the lower probability in the SCD group was found to be negatively correlated with the number of APOE ε4 alleles (r = -0.225, p = 0.041) in a partial correlation analysis with years of education as a covariate. Our results suggest that the DFC may be a more sensitive parameter than the SFC and can be used as a potential biomarker for the early detection of SCD.

Keywords: dynamic functional connectome; neuroimaging; resting-state; static functional connectome; subjective cognitive decline.