MSC therapy in livestock models

Transl Anim Sci. 2022 Jan 27;6(1):txac012. doi: 10.1093/tas/txac012. eCollection 2022 Jan.

Abstract

Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.

Keywords: agriculture; dual-purpose model; in vivo model; livestock; mesenchymal stem/stromal cell; regenerative therapy.

Publication types

  • Review