StackZDPD: a novel encoding scheme for mass spectrometry data optimized for speed and compression ratio

Sci Rep. 2022 Mar 30;12(1):5384. doi: 10.1038/s41598-022-09432-1.

Abstract

As the pervasive, standardized format for interchange and deposition of raw mass spectrometry (MS) proteomics and metabolomics data, text-based mzML is inefficiently utilized on various analysis platforms due to its sheer volume of samples and limited read/write speed. Most research on compression algorithms rarely provides flexible random file reading scheme. Database-developed solution guarantees the efficiency of random file reading, but nevertheless the efforts in compression and third-party software support are insufficient. Under the premise of ensuring the efficiency of decompression, we propose an encoding scheme "Stack-ZDPD" that is optimized for storage of raw MS data, designed for the format "Aird", a computation-oriented format with fast accessing and decoding time, where the core compression algorithm is "ZDPD". Stack-ZDPD reduces the volume of data stored in mzML format by around 80% or more, depending on the data acquisition pattern, and the compression ratio is approximately 30% compared to ZDPD for data generated using Time of Flight technology. Our approach is available on AirdPro, for file conversion and the Java-API Aird-SDK, for data parsing.

MeSH terms

  • Algorithms
  • Data Compression*
  • Mass Spectrometry / methods
  • Proteomics / methods
  • Software