Comb-type polymer-hybridized MXene nanosheets dispersible in arbitrary polar, nonpolar, and ionic solvents

Sci Adv. 2022 Apr;8(13):eabl5299. doi: 10.1126/sciadv.abl5299. Epub 2022 Mar 30.

Abstract

Solution-based processing of two-dimensional (2D) nanomaterials is highly desirable, especially for the low-temperature large-area fabrication of flexible multifunctional devices. MXenes, an emerging family of 2D materials composed of transition metal carbides, carbonitrides, or nitrides, provide excellent electrical and electrochemical properties through aqueous processing. Here, we further expand the horizon of MXene processing by introducing a polymeric superdispersant for MXene nanosheets. Segmented anchor-spacer structures of a comb-type polymer, polycarboxylate ether (PCE), provide polymer grafting-like steric spacings over the van der Waals range of MXene surfaces, thereby reducing the colloidal interactions by the order of 103, regardless of solvent. An unprecedented broad dispersibility window for Ti3C2Tx MXene, covering polar, nonpolar, and even ionic solvents, was achieved. Furthermore, close PCE entanglements in MXene@PCE composite films resulted in highly robust properties upon prolonged mechanical and humidity stresses.