Organo-Soluble Decanoic Acid-Modified Ni-Rich Cathode Material LiNi0.90Co0.07Mn0.03O2 for Lithium-Ion Batteries

ACS Appl Mater Interfaces. 2022 Apr 13;14(14):16348-16356. doi: 10.1021/acsami.2c02797. Epub 2022 Mar 30.

Abstract

Ni-rich layered oxides as cathode materials deliver a higher capacity than those used currently, in hopes of improving the energy density of Li-ion batteries. However, the surface residual alkali and the interfacial parasitic reactions caused by the rich nickel bring a series of problems such as surface slurrying, structure deterioration, mechanical fracture, and capacity decay. Herein, different from the common surface coating strategies with inorganics, an organo-soluble acid modification approach is proposed to meet the challenges. For LiNi0.90Co0.07Mn0.03O2 (NCM90), decanoic acid can react with the residual lithium salts on the surface to form an organic lithium salt-dominant modification layer. During cycling, an organic lithium-involved cathode/electrolyte interface (CEI) layer is rapidly formed. Specially, the solubility of decanoic acid in the organic electrolyte makes the CEI layer keep strong interaction with NCM90, thin but effective. Consequently, the modified NCM90 exhibits notable performances in terms of structural stability, mechanical integrity, and capacity retention.

Keywords: Ni-rich cathode material; cycling stability; decanoic acid; lithium-ion battery; surface modification.