Enhanced Performance of Protonic Solid Oxide Steam Electrolysis Cell of Zr-Rich Side BaZr0.6Ce0.2Y0.2O3-δ Electrolyte with an Anode Functional Layer

ACS Omega. 2022 Mar 9;7(11):9944-9950. doi: 10.1021/acsomega.2c00569. eCollection 2022 Mar 22.

Abstract

Proton-conducting solid oxide electrolysis cells (H-SOEC) containing a 15-μm-thick BaZr0.6Ce0.2Y0.2O3-δ (BZCY622) electrolyte thin film, porous cathode cermet support, and La0.6Sr0.4Co0.2Fe0.8O3-δ anodes were fabricated using a reactive cofiring process at approximately 1400 °C. Steam electrolysis was conducted by supplying wet air to the anode at a water partial pressure of 20 kPa. The performance was evaluated using electrochemical measurements and gas chromatography. At 600 °C, the cells generated an electrolysis current of 0.47 A cm-2 at a 1.3 V bias while the Faradaic efficiency reached 56% using 400 mA cm-2. The electrolysis performance was efficiently improved by introducing a 40-nm-thick La0.5Sr0.5CoO3-δ (LSC) nanolayer as an anode functional layer (AFL). The cells with LSC AFL produced an electrolysis current of 0.87 A cm-2 at a 1.3 V bias at 600 °C, and the Faradaic efficiency reached 65% under 400 mA cm-2. Impedance analysis showed that the introduction of the AFL decreased the ohmic resistances and improved interfacial proton transfer across the anode/electrolyte interface and polarization resistances related to the anode reaction. These results demonstrate opportunities for future research on AFL to improve the performance of H-SOECs with Zr-rich BaZr x Ce1-x-y Y y O3-δ electrolytes.