Identifi cation of the Underlying Genetic Factors of Skin Aging in a Korean Population Study

J Cosmet Sci. 2021 Jan-Feb;72(1):63-80.

Abstract

Genetic polymorphisms may affect the molecular mechanisms underlying determination of skin type. So far, several genetic studies have been reported; however, very few studies have been conducted to examine the relationship between genotype and skin phenotypes. In this study, the genome sequences of individuals tested for five cosmetic characteristics (wrinkles, moisture content, pigmentation, oil content, and ensitivity) were determined, and we also conducted five genome-wide association studies (GWASs) to identify predictive markers. Some single-nucleotide polymorphisms (SNPs) within those genes were more frequent in individuals exhibiting stronger traits. GWASs revealed that two genome-wide significant SNPs within FCRL5 and OCA2 genes were associated with wrinkles and pigmentation, respectively (p < 5 × 10-8), and that genomewide SNPs in 21 genes (wrinkles: FCRL5, REEP3, ADSS, and SPTLC1; moisture: TBX4, TRPM3, CEMIP2, CTSH, and TTC39C; pigmentation: OCA2, NCLN, TNS1, CDC42BPA, HS3ST4, and UNCX; oil: SYN2, CNDP1, GAS6, INSR, and TNFRSF19; and sensitivity: CREB5) might be associated with five skin phenotypes. Among these, a genome-wide significant SNP (rs117381658) and the SNP located downstream of FCRL5, which encodes a member of the immunoglobulin receptor family, were associated with an increased risk of wrinkles (p = 1.52 × 10-8). The other genome-wide significant SNP (rs74653330) was associated with a decreased risk of pigmentation (p = 1.04 × 10-8), which is located in the coding region of OCA2 that encodes for a transporter of melanin. Our study reports genetic factors associated with skin cosmetology parameters in the Korean population. We hope our findings will provide a foundation for further genetic and molecular studies related to custom cosmetics. Based on these findings, the industry will be able to provide consumers with ingredients capable of palliating the lack of function associated in genes with SNPs.

MeSH terms

  • Cations
  • Genome-Wide Association Study
  • Humans
  • Receptors, Tumor Necrosis Factor / genetics
  • Republic of Korea
  • Skin Aging* / genetics
  • Skin Pigmentation / genetics

Substances

  • Cations
  • Receptors, Tumor Necrosis Factor
  • TNFRSF19 protein, human