Flavobacterium selenitireducens sp. nov., isolated from rhizosphere soil of ancient mulberry

Int J Syst Evol Microbiol. 2022 Mar;72(3). doi: 10.1099/ijsem.0.005304.

Abstract

A Gram-stain-negative, non-motile, aerobic, yellow, convex, rod-shaped mesophilic bacterial strain, designated strain D33T, was isolated from rhizosphere soil of ancient mulberry in Dezhou city, Shandong province, PR China. The strain grew at 8-37 °C (optimum, 30 °C), pH 4-9 (optimum, pH 7) and growth occurred at 0.5-5.5 % (w/v) NaCl (optimally at 1 %). The results of the phylogenetic analyses of 16S rRNA gene and whole genome sequences indicated that D33T was closely related to members of the genus Flavobacterium and had the highest 16S rRNA gene sequence similarity with 'Flavobacterium agri' KACC 19300 (95.4 %), Flavobacterium ichthyis NST-5T (94.6 %), Flavobacterium ahnfeltiae KCTC 32467T (93.6 %) and Flavobacterium longum JCM 19141T (93.6 %). The genome size of D33T was 3.8 Mb and the DNA G+C content was 48.0 mol%. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values among D33T and reference strains were lower than the threshold values for species delineation. The only respiratory quinone of D33T was menaquinone 6 (MK-6). The predominant fatty acids (>5 %) were C15:0, C16 : 0, C18 : 0, iso-C15:0, iso-C17 : 0 3-OH, anteiso-C15 : 0 and summed feature 9 . The polar lipid profile contained phosphatidylethanolamine, two unidentified aminophospholipids, three unidentified aminolipids and two unidentified lipids. Combined data from phenotypic, phylogenetic and chemotaxonomic studies indicated that D33T is a representative of a novel species of the genus Flavobacterium, for which the name Flavobacterium selenitireducens sp. nov. is proposed. The type strain is D33T (=GDMCC 1.1946T=KACC 22131T).

Keywords: Flavobacterium selenitireducens sp. nov; genome; mulberry; phylogenomic tree; rhizosphere.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Flavobacterium*
  • Morus* / genetics
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Rhizosphere
  • Sequence Analysis, DNA
  • Soil

Substances

  • DNA, Bacterial
  • Fatty Acids
  • RNA, Ribosomal, 16S
  • Soil