Speed-accuracy tradeoffs influence the main sequence of saccadic eye movements

Sci Rep. 2022 Mar 28;12(1):5262. doi: 10.1038/s41598-022-09029-8.

Abstract

Several studies have proposed that an optimal speed-accuracy tradeoff underlies the stereotyped relationship between amplitude, duration and peak velocity of saccades (main sequence). To test this theory, we asked 8 participants to make saccades to Gaussian-blurred spots and manipulated the task's accuracy constraints by varying target size (1, 3, and 5°). The largest targets indeed yielded more endpoint scatter (and lower gains) than the smallest targets, although this effect subsided with target eccentricity. The main sequence depended on several interacting factors: saccade latency, saccade gain and target size. Early saccades, which were faster than amplitude-matched late saccades, followed the target-size dependency one would expect from a speed-accuracy tradeoff process. They had higher peak velocities and shorter durations for larger targets than for smaller targets. For late saccades, however, the opposite was found. Deviations from the main sequence also covaried with saccade gain, in line with the idea that motor noise underlies part of the endpoint variability. Thus, our data provide partial evidence that the saccadic system weighs the detrimental effects of motor noise on saccade accuracy against movement duration and speed, but other factors also modulate the kinematics. We discuss the possible involvement of parallel saccade pathways to account for our findings.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Data Collection
  • Humans
  • Noise*
  • Saccades*
  • Time Factors