emDNA - A Tool for Modeling Protein-decorated DNA Loops and Minicircles at the Base-pair Step Level

J Mol Biol. 2022 Jun 15;434(11):167558. doi: 10.1016/j.jmb.2022.167558. Epub 2022 Mar 24.

Abstract

Computational modeling of nucleic acids plays an important role in molecular biology, enhancing our general understanding of the relationship between structure and function. Biophysical studies have provided a wealth of information on how double-helical DNA responds to proteins and other molecules in its local environment but far less understanding of the larger scale structural responses found in protein-decorated loops and minicircles. Current computational models of DNA range from detailed all-atom molecular dynamics studies, which produce rich time and spatially dependent depictions of small DNA fragments, to coarse-grained simulations, which sacrifice detailed physical and chemical information to treat larger-scale systems. The treatment of DNA used here, at the base-pair step level with rigid-body parameters, allows one to develop models hundreds of base pairs long from local, sequence-specific features found from experiment. The emDNA software takes advantage of this framework, producing optimized structures of DNA at thermal equilibrium with built-in or user-generated elastic models. The program, in combination with the case studies included in this article, allows users of any skill level to develop and investigate mesoscale models of their own design. The functionality of emDNA includes a tool to incorporate experiment-specific configurations, e.g., protein-bound and/or melted DNA from known high-resolution structures, within higher-order 3D models by fixing the orientation and position of user-specified base pairs. The software provides a new avenue into multiscale genetic modeling, giving a wide range of users a deeper understanding of DNA mesoscale organization and the opportunity to pose new questions in genetic research. The publicly available emDNA software, including build instructions and usage information, is available on GitHub (https://nicocvn.github.io/emDNA/).

Keywords: DNA loops; DNA minicircles; energy optimization; molecular modeling; protein-DNA interactions.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Base Pairing
  • DNA* / chemistry
  • Molecular Dynamics Simulation*
  • Nucleic Acid Conformation
  • Proteins* / chemistry
  • Software*

Substances

  • Proteins
  • DNA