Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity

Viruses. 2022 Mar 4;14(3):531. doi: 10.3390/v14030531.

Abstract

The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.

Keywords: DHHC9; S-acylation; SARS-CoV-2; antiviral; bis-piperazine; palmitoylation; palmitoyltransferase; palmitoyltransferase inhibitor; post-translational modifications; spike.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • COVID-19*
  • Humans
  • Lipoylation
  • SARS-CoV-2*
  • Spike Glycoprotein, Coronavirus

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2