Omnidirectional Jump Control of a Locust-Computer Hybrid Robot

Soft Robot. 2023 Feb;10(1):40-51. doi: 10.1089/soro.2021.0137. Epub 2022 Mar 23.

Abstract

Jumping locomotion is critical for microrobots to overcome obstacles. Among the microjumping robots, the development of an omnidirectional jumping mechanism is challenging. To avoid the complicated microfabrication process, we present an insect-computer hybrid robot by controlling the locomotions of an Oriental Migratory Locust (Locusta migratoria manilensis, Meyen 1835). The insect-computer hybrid robot achieves repetitive omnidirectional jumps of ∼100 mm high. A series of experiments on jumping control, turning control, and collaborative directional jumping control are carried out. We also demonstrate the implementation of a wireless stimulator backpack that provides remote locomotion control, which transforms the insect into a hybrid robot. Moreover, a feedback jump control system is subsequently presented. The results indicate that the hybrid robot could easily achieve an omnidirectional jump and maintain body righting after landing. This robot is well-suited for applications that require locomotion on uneven terrains, such as environmental surveillance and search and rescue.

Keywords: electrical stimulation; insect-machine hybrid; jumping robot; legged robot; microrobot.