Influence of Carbon Sources on Biomass and Biomolecule Accumulation in Picochlorum sp. Cultured under the Mixotrophic Condition

Int J Environ Res Public Health. 2022 Mar 19;19(6):3674. doi: 10.3390/ijerph19063674.

Abstract

The major downfalls of the microalgal biorefinery are low volume of high value product accumulation, low biomass productivity and high cultivation costs. Here, we aimed to improve the biomass productivity of the industrially relevant Picochlorum sp. BDUG 100241 strain. The growth of Picochlorum sp. BDUG 100241 was investigated under different cultivations conditions, including photoautotrophic (with light), mixotrophic (1% glucose, with light) and heterotrophic (1% glucose, without light). Among them, Picochlorum sp. BDUG100241 showed the highest growth in the mixotrophic condition. Under different (1%) carbon sources' supplementation, including glucose, sodium acetate, glycerol, citric acid and methanol, Picochlorum sp. BDUG100241 growth was tested. Among them, sodium acetate was found to be most suitable carbon source for Picochlorum sp. BDUG 100241 growth, biomass (1.67 ± 0.18 g/L) and biomolecule productivity. From the different concentrations of sodium acetate (0, 2.5, 5.0, 7.5 and 10 g/L) tested, the maximum biomass production of 2.40 ± 0.20 g/L with the biomass productivity of 95 ± 5.00 mg/L/d was measured from 7.5 g/L in sodium acetate. The highest total lipid (53.50 ± 1.70%) and total carotenoids (0.75 ± 0.01 µg/mL) contents were observed at the concentration of 7.5 g/L and 5.0 g/L of sodium acetate as a carbon source, respectively. In conclusion, the mixotrophic growth condition containing 7.5 g/L of sodium acetate showed the maximum biomass yield and biomolecule accumulation compared to other organic carbon sources.

Keywords: Picochlorum sp.; astaxanthin; biomass; lipids; sodium acetate; total carotenoids; β-carotene.

MeSH terms

  • Biomass
  • Carbon
  • Chlorophyta*
  • Glucose
  • Microalgae*
  • Sodium Acetate

Substances

  • Sodium Acetate
  • Carbon
  • Glucose