An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China

Int J Environ Res Public Health. 2022 Mar 19;19(6):3650. doi: 10.3390/ijerph19063650.

Abstract

Water resources are critical for the survival and prosperity of both natural and socioeconomic systems. A good and informational water resources evaluation system is substantial in monitoring and maintaining sustainable use of water. The Driver-Pressure-State-Impact-Response (DPSIR) framework is a widely used general framework that enabled the measurement of water resources security in five different environmental and socioeconomic subsystems: driver, pressure, state, impact, and response. Methodologically, outcomes of water resources evaluation based on such framework and using fuzzy set pair analysis method and confidence interval rating method depend critically on a confidence threshold parameter which was often subjectively chosen in previous studies. In this work, we demonstrated that the subjectivity in the choice of this critical parameter can lead to contradicting conclusions about water resources security, and we addressed this caveat of subjectivity by proposing a simple modification in which we sample a range of thresholds and pool them to make more objective evaluations. We applied our modified method and used DPSIR framework to evaluate the regional water resource security in Jiangxi Province, China. The spatial-temporal analysis of water resources security level was carried out in the study area, despite the improvement in Pressure, Impact, and Response factors, the Driver factor is found to become less safe over the years. Significant variation of water security across cities are found notably in Pressure and Response factors. Furthermore, we assessed both cross-sectionally and longitudinally the inter-correlations among the DPSIR nodes in the DPSIR framework. The region-specific associations among the DPSIR nodes showed important deviances from the general DPSIR framework, and our analysis showed that in our study region, although Responses of regional government work effectively in improving Pressure and State security, more attention should be paid to improving Driver security in future regional water resources planning and management in Jiangxi Province, China.

Keywords: DPSIR; confidence threshold method; water resources security.

MeSH terms

  • China
  • Cities
  • Conservation of Natural Resources* / methods
  • Ecosystem
  • Spatio-Temporal Analysis
  • Water
  • Water Resources*

Substances

  • Water