Differences in Acellular Reactive Oxygen Species (ROS) Generation by E-Cigarettes Containing Synthetic Nicotine and Tobacco-Derived Nicotine

Toxics. 2022 Mar 11;10(3):134. doi: 10.3390/toxics10030134.

Abstract

Electronic nicotine delivery systems (ENDS) containing synthetic nicotine have yet to be classified as tobacco products; consequently, there is ambiguity over whether Food and Drug Administration (FDA) regulatory authority can be extended to include tobacco-free nicotine (TFN) e-cigarettes. In recent years, a more significant number of e-cigarette companies have been manufacturing TFN-containing e-cigarettes and e-liquids to circumvent FDA regulations. While studies have shown that aerosols generated from tobacco-derived nicotine-containing e-cigarettes contain significant reactive oxygen species (ROS) levels, no comparison studies have been conducted using TFN e-cigarettes. This study uses a single puff aerosol generator to aerosolize TFN and tobacco-derived nicotine-containing vape products and subsequently involves semi-quantifying the ROS generated by these vape products in H2O2 equivalents. We found that the differences between ROS levels generated from TFN and tobacco-derived nicotine-containing vape products vary by flavor. TFN tobacco flavored and fruit flavored products are more toxic in terms of ROS generation than menthol/ice and drink/beverage flavored products using TFN. Our study provides further insight into understanding how flavoring agents used in vape products impact ROS generation from e-cigarettes differently in TFN e-cigarettes than e-cigarettes using tobacco-derived nicotine.

Keywords: electronic nicotine delivery systems; reactive oxygen species (ROS); synthetic nicotine; tobacco-derived nicotine; tobacco-free nicotine (TFN); vape-bar.