Enhancing Green Product Generation of Photocatalytic NO Oxidation: A Case of WO3 Nanoplate/g-C3N4 S-Scheme Heterojunction

Langmuir. 2022 Apr 5;38(13):4138-4146. doi: 10.1021/acs.langmuir.2c00371. Epub 2022 Mar 24.

Abstract

Nitric oxide (NO) removal by photocatalytic oxidation over g-C3N4 has achieved more efficient results. However, there is a concern about the high NO-to-NO2 conversion yield of products, which is not suitable for the photocatalytic NO reaction. In this study, we modify g-C3N4 by WO3 nanoplates for the first time for photocatalytic NO oxidation over a WO3/g-C3N4 composite to enhance the green product selectivity under atmospheric conditions. The results indicate that the photocatalytic efficiency for NO removal by the WO3/g-C3N4 composite is drastically improved and achieves 52.5%, which is approximately 2.1 times higher than that of pure g-C3N4. Significantly, the green product (NO3-) selectivity of the WO3/g-C3N4 composite is 8.7 times higher than that of pure g-C3N4, and the selectivity remained high even after five cycles of photocatalytic tests. We also conclude that the enhanced green product selectivity of photocatalytic NO oxidation by the WO3/g-C3N4 composite is due to the separation and acceleration of the photogenerated charges of the WO3/g-C3N4 S-scheme heterojunction.