Modification of Thin Film Composite Pressure Retarded Osmosis Membrane by Polyethylene Glycol with Different Molecular Weights

Membranes (Basel). 2022 Feb 28;12(3):282. doi: 10.3390/membranes12030282.

Abstract

An investigation of the effect of the molecular weight of polyethylene glycol (PEG) on thin-film composite (TFC) flat sheet polysulfone membrane performance was conducted systematically, for application in forward osmosis (FO) and pressure retarded osmosis (PRO). The TFC flat sheet PSf-modified membranes were prepared via a non-solvent phase-separation technique by introducing PEGs of different molecular weights into the dope solution. The TFC flat sheet PSf-PEG membranes were characterized by SEM, FTIR and AFM. The PSf membrane modified with PEG 600 was found to have the optimum composition. Under FO mode, this modified membrane had a water permeability of 12.30 Lm-2h-1 and a power density of 2.22 Wm-2, under a pressure of 8 bar in PRO mode, using 1 M NaCl and deionized water as the draw and feed solutions, respectively. The high water permeability and good mechanical stability of the modified TFC flat sheet PSF-PEG membrane in this study suggests that this membrane has great potential in future osmotically powered generation systems.

Keywords: flat sheet thin-film composite membrane; internal concentration polarization; power density; pressure retarded osmosis; structural parameter.