The Role of ARID1A in the Nonestrogenic Modulation of IGF-1 Signaling

Mol Cancer Res. 2022 Jul 6;20(7):1071-1082. doi: 10.1158/1541-7786.MCR-21-0961.

Abstract

Gaining pharmacologic access to the potential of ARID1A, a tumor suppressor protein, to mediate transcriptional control over cancer gene expression is an unresolved challenge. Retinoid X receptor ligands are pleiotropic, incompletely understood tools that regulate breast epithelial cell proliferation and differentiation. We found that low-dose bexarotene (Bex) combined with the nonselective beta-blocker carvedilol (Carv) reduces proliferation of MCF10DCIS.com cells and markedly suppresses ARID1A levels. Similarly, Carv synergized with Bex in MCF-7 cells to suppress cell growth. Chromatin immunoprecipitation sequencing analysis revealed that under nonestrogenic conditions Bex + Carv alters the concerted genomic distribution of the chromatin remodeler ARID1A and acetylated histone H3K27, at sites related to insulin-like growth factor (IGF) signaling. Several distinct sites of ARID1A enrichment were identified in the IGF-1 receptor and IRS1 genes, associated with a suppression of both proteins. The knock-down of ARID1A increased IGF-1R levels, prevented IGF-1R and IRS1 suppression upon Bex + Carv, and stimulated proliferation. In vitro IGF-1 receptor neutralizing antibody suppressed cell growth, while elevated IGF-1R or IRS1 expression was associated with poor survival of patients with ER-negative breast cancer. Our study demonstrates direct impact of ARID1A redistribution on the expression and growth regulation of IGF-1-related genes, induced by repurposed clinical drugs under nonestrogenic conditions.

Implications: This study underscores the possibility of the pharmacologic modulation of the ARID1A factor to downregulate protumorigenic IGF-1 activity in patients with postmenopausal breast cancer undergoing aromatase inhibitor treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / genetics
  • Breast Neoplasms* / metabolism
  • DNA-Binding Proteins* / genetics
  • Female
  • Humans
  • Insulin-Like Growth Factor I* / genetics
  • Insulin-Like Growth Factor I* / metabolism
  • MCF-7 Cells
  • Receptor, IGF Type 1* / metabolism
  • Signal Transduction
  • Transcription Factors* / genetics

Substances

  • ARID1A protein, human
  • DNA-Binding Proteins
  • Transcription Factors
  • Insulin-Like Growth Factor I
  • Receptor, IGF Type 1