Renewable Furfural-Based Polyesters Bearing Sulfur-Bridged Difuran Moieties with High Oxygen Barrier Properties

Biomacromolecules. 2022 Apr 11;23(4):1803-1811. doi: 10.1021/acs.biomac.2c00097. Epub 2022 Mar 23.

Abstract

With the goal of achieving high barrier with bio-based materials, for example, for packaging applications, a series of novel furfural-based polyesters bearing sulfide-bridged difuran dicarboxylic acid units with high oxygen barrier properties were synthesized and characterized. For the novel poly(alkylene sulfanediyldifuranoate)s, a 11.2-1.9× higher barrier improvement factor compared to amorphous poly(ethylene terephthalate) was observed which places the novel polyesters in the top class among previously reported 2,5-furandicarboxylic acid (FDCA) and 2,2'-bifuran-based polyesters. Titanium-catalyzed polycondensation reactions between the novel synthesized monomer, dimethyl 5,5'-sulfanediyldi(furan-2-carboxylate), and four different diols, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, afforded difuran polyesters with high intrinsic viscosities (0.76-0.90 dL/g). These polyesters had good thermal stability, decomposing at 342-363 and 328-570 °C under nitrogen and air, respectively, which allowed processing them into free-standing films via melt-pressing. In tensile testing of the film specimens, tensile moduli in the range of 0.4-2.6 GPa were recorded, with higher values observed for the polyesters with shorter diol units. Interestingly, besides the low oxygen permeability, the renewable sulfide-bridged furan monomer also endowed the polyesters with slight UV shielding effect, with cutoff wavelengths of ca. 350 nm, in contrast to FDCA-based polyesters, which lack significant UV light absorption at over 300 nm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Furaldehyde*
  • Oxygen
  • Polyesters*
  • Sulfides
  • Sulfur

Substances

  • Polyesters
  • Sulfides
  • Sulfur
  • Furaldehyde
  • Oxygen