Self-consistent field theory of chiral nematic worm-like chains

J Chem Phys. 2022 Mar 21;156(11):114902. doi: 10.1063/5.0078937.

Abstract

Many macromolecules of biological and technological interest are both chiral and semi-flexible. DNA and collagen are good examples. Such molecules often form chiral nematic (or cholesteric) phases, as is well-documented in collagen and chitin. This work presents a method for studying cholesteric phases in the highly successful self-consistent field theory of worm-like chains, offering a new way of studying many biologically relevant molecules. The method involves an effective Hamiltonian with a chiral term inspired by the Oseen-Frank (OF) model of liquid crystals. This method is then used to examine the formation of cholesteric phases in chiral-nematic worm-like chains as a function of polymer flexibility, as well as the optimal cholesteric pitch and distribution of polymer segment orientations. Our approach not only allows for the determination of the isotropic-cholesteric transition and segment distributions, beyond what the OF model promises, but also explicitly incorporates polymer flexibility into the study of the cholesteric phase, offering a more complete understanding of the behavior of semiflexible chiral-nematic polymers.

MeSH terms

  • DNA
  • Liquid Crystals* / chemistry
  • Polymers / chemistry

Substances

  • Polymers
  • DNA