Efficacy of Constructing Digital Hybrid Skull-Dentition Images Using an Intraoral Scanner and Cone-Beam Computed Tomography

Scanning. 2022 Mar 3:2022:8221514. doi: 10.1155/2022/8221514. eCollection 2022.

Abstract

Cone-beam computed tomography (CBCT) can distort dentition, and additional imaging is often required. A plaster model to help digitize dental images has been widely used in clinical practice, but there are some inconveniences such as complexity of the process and the risk of damage. The aim of this study was to evaluate the potential for improving dentition imaging with CBCT scans using an intraoral scanner instead of a plaster model. The study used laser model-scanned images of plaster models, imaging from two intraoral scanners, and CBCT images from 20 patients aged 12-18 years. CS 3600 (Carestream Dental, Atlanta, USA) and i700 (Medit, Seoul, Korea) were used as intraoral scanners. The full arch was scanned at once or in three sections using intraoral scanners. The segmented scans were merged to obtain full-arch images. With i700, full-arch images were additionally acquired using its "smart stich" function. The virtual skull-dentition hybrid images obtained from intraoral scanners were superimposed with images obtained using a plaster cast. The difference and distance of coordinate values at each reference point were measured. The average distances from the images obtained with the plaster cast were smaller than 0.39 mm, which is the voxel size of CBCT. Scanning the complete or partial arch using CS 3600 or i700 satisfactorily complemented the CBCT when compared to the plaster model. The virtual skull-dentition hybrid image obtained from intraoral scanners will be clinically useful, especially for patients and surgeons who have difficulty in scanning the complete arch at once.

MeSH terms

  • Adolescent
  • Child
  • Cone-Beam Computed Tomography / methods
  • Dentition*
  • Humans
  • Imaging, Three-Dimensional / methods
  • Models, Dental*
  • Skull / diagnostic imaging