Bioconversion of chitin waste through Stenotrophomonas maltophilia for production of chitin derivatives as a Seabass enrichment diet

Sci Rep. 2022 Mar 21;12(1):4792. doi: 10.1038/s41598-022-08371-1.

Abstract

Marine wastes pose a great threat to the ecosystem leading to severe environmental hazards and health issues particularly the shellfish wastes. The shellfish waste which contains half of the amount of chitin can be efficiently transformed into useful products. Various approaches for the hydrolysis of chitin like physical, chemical, and enzymatic processes are there. Still, the use of enzyme chitinase is well documented as an effective and eco-friendly method. The present study summarizes the isolation of chitinase enzyme producing bacteria from different shrimp waste disposal sites in Parangipettai (India), and the possible use of an enzyme hydrolyzate as an immunostimulant to Asian Seabass (Lates calcarifer). The potential chitinase-producing bacteria were identified by 16S rRNA gene sequencing as Stenotrophomonas maltophilia. After purification, the chitinase specific activity was 5.01 (U/ml) and the protein content was 72 mg and the recovery rate was 48.06%. The optimum pH and temperature for the chitinolytic activity were 6.5 and at 35-50 °C, respectively. The animal experiment trial was done with our feed supplements which included 0.0 (control), 0.5%, 1% and 2% of chitin degraded product. All the supplementary feed had an optimal 42% (w/w) of crude protein. The feed protein level was 41-43% on average and gross energy was 13-17 kcal/g and the feed was observed to exhibit a significantly higher (p < 0.05) survival rate, condition factor, specific growth rates, and body weight gain was also found to be promising compared to other fishes fed with control diet only. The red blood cells (RBC) and white blood cell (WBC) counts were found to increase significantly after being challenged with infection in animals fed with chitin derivatives from 1st week to 3rd week when compared to the control. The hematocrit (Hct) values were low on the 2nd and 3rd week in infected fish fed with chitin derivatives. This low level was due to infection lyses of the red blood cells and increased nitro blue tetrazolium reduction. The control diet-fed fish showed 70% mortality but the chitin derivative supplemented fishes showed only 20% mortality post-infection. The results of the study encompass that the use of chitin-derivate enriched feed further is taken into large-scale approaches thereby benefitting the aquaculture sector.

Publication types

  • Clinical Trial, Veterinary
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chitin / metabolism
  • Chitinases* / metabolism
  • Diet
  • Ecosystem
  • Fishes / metabolism
  • Perciformes* / metabolism
  • RNA, Ribosomal, 16S / genetics
  • Stenotrophomonas maltophilia* / metabolism

Substances

  • Chitin
  • Chitinases
  • RNA, Ribosomal, 16S