A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring

ACS Nano. 2022 Apr 26;16(4):6244-6254. doi: 10.1021/acsnano.1c11658. Epub 2022 Mar 21.

Abstract

The triboelectric nanogenerator shows a broad application potential in wind energy collection and wind speed sensing. However, it is difficult to realize wind energy collection and real-time wind speed monitoring in one simple device without external power support. Here, a high-performance dual-mode triboelectric nanogenerator is proposed to simultaneously collect wind energy efficiently and monitor wind speed in real time, which is composed by an alternating current triboelectric nanogenerator (AC-TENG) and a direct-current triboelectric nanogenerator (DC-TENG). Based on the material optimization, the charge density of the AC-TENG improves by a factor of 1 compared with previous works. Moreover, benefiting from the elastic structure and material optimization to realize a low friction force, the AC-TENG shows an excellent durability and obtains a retention of 87% electric output after 1 200 000 operation cycles. Meanwhile, thanks to the high charge density and low friction force, the energy-harvesting efficiency of the AC-TENG is doubled. In addition, the DC-TENG not only displays an excellent real-time sensing performance but also can provide gale warning. Our finding exhibits a strategy for efficiently collecting wind energy and achieving fully self-powered and real-time wind speed monitoring.

Keywords: dual-mode; self-powered; triboelectric nanogenerator; wind energy harvesting; wind speed monitoring.