Properties of Bulk In-Pt Intermetallic Compounds in Methanol Steam Reforming

Chemphyschem. 2022 Apr 20;23(8):e202200074. doi: 10.1002/cphc.202200074. Epub 2022 Mar 21.

Abstract

Heterogeneous catalysts are often complex materials containing different compounds. While this can lead to highly beneficial interfaces, it is difficult to identify the role of single components. In methanol steam reforming (MSR), the interplay between intermetallic compounds, supporting oxides and redox reactions leads to highly active and CO2 -selective materials. Herein, the intrinsic catalytic properties of unsupported In3 Pt2 , In2 Pt, and In7 Pt3 as model systems for Pt/In2 O3 -based catalytic materials in MSR are addressed. In2 Pt was identified as the essential compound responsible for the reported excellent CO2 -selectivity of 99.5 % at 300 °C in supported systems, showing a CO2 -selectivity above 99 % even at 400 °C. Additionally, the partial oxidation of In7 Pt3 revealed that too much In2 O3 is detrimental for the catalytic properties. The study highlights the crucial role of intermetallic In-Pt compounds in Pt/In2 O3 materials with excellent CO2 -selectivity.

Keywords: heterogeneous catalysis; intermetallic compounds; methanol steam reforming; operando measurements; renewable hydrogen.