ABCDs of the Relative Contributions of Pseudomonas aeruginosa Quorum Sensing Systems to Virulence in Diverse Nonvertebrate Hosts

mBio. 2022 Apr 26;13(2):e0041722. doi: 10.1128/mbio.00417-22. Epub 2022 Mar 21.

Abstract

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that exhibits pathogenicity in an unusually broad range of plants and animals, and it is of interest to study the roles of particular virulence-related factors in diverse hosts. The production of many P. aeruginosa virulence factors is under the control of a quorum sensing (QS) signaling network, which has three interconnected branches that engage in intricate cross talk: Las, Rhl, and MvfR. Because there has been no systematic comparison of the roles of the three QS systems in mediating P. aeruginosa virulence in various hosts, we compared the virulence of wild-type (WT) P. aeruginosa PA14 and a set of isogenic PA14 QS in-frame deletion mutants in four selected hosts, the reference plant Arabidopsis thaliana (Arabidopsis), the crop plant Brassica napus (canola), the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster. The first letters of the selected host genera, A, B, C, and D, inspired the title of this article and indicate that this work lays the groundwork for future elucidation of the specific roles of each QS branch in mediating virulence in diverse hosts. IMPORTANCE In this study, we performed a systematic comparison of the virulence of WT P. aeruginosa and QS mutants in selected hosts and conditions. This work represents an important contribution to the long-term goal of unraveling the entangled roles of different branches of the P. aeruginosa QS network in different hosts and will serve as a valuable resource for the field of host-pathogen interactions.

Keywords: Pseudomonas aeruginosa; broad host range; opportunistic pathogen; quorum sensing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila melanogaster
  • Pseudomonas aeruginosa* / genetics
  • Quorum Sensing*
  • Virulence
  • Virulence Factors / genetics

Substances

  • Virulence Factors