Assessing the Spatiotemporal Spread Pattern of the COVID-19 Pandemic in Malaysia

Front Public Health. 2022 Mar 4:10:836358. doi: 10.3389/fpubh.2022.836358. eCollection 2022.

Abstract

Introduction: The unprecedented COVID-19 pandemic has greatly affected human health and socioeconomic backgrounds. This study examined the spatiotemporal spread pattern of the COVID-19 pandemic in Malaysia from the index case to 291,774 cases in 13 months, emphasizing on the spatial autocorrelation of the high-risk cluster events and the spatial scan clustering pattern of transmission.

Methodology: We obtained the confirmed cases and deaths of COVID-19 in Malaysia from the official GitHub repository of Malaysia's Ministry of Health from January 25, 2020 to February 24, 2021, 1 day before the national vaccination program was initiated. All analyses were based on the daily cumulated cases, which are derived from the sum of retrospective 7 days and the current day for smoothing purposes. We examined the daily global, local spatial autocorrelation and scan statistics of COVID-19 cases at district level using Moran's I and SaTScan™.

Results: At the initial stage of the outbreak, Moran's I index > 0.5 (p < 0.05) was observed. Local Moran's I depicted the high-high cluster risk expanded from west to east of Malaysia. The cases surged exponentially after September 2020, with the high-high cluster in Sabah, from Kinabatangan on September 1 (cumulative cases = 9,354; Moran's I = 0.34; p < 0.05), to 11 districts on October 19 (cumulative cases = 21,363, Moran's I = 0.52, p < 0.05). The most likely cluster identified from space-time scanning was centered in Jasin, Melaka (RR = 11.93; p < 0.001) which encompassed 36 districts with a radius of 178.8 km, from November 24, 2020 to February 24, 2021, followed by the Sabah cluster.

Discussion and conclusion: Both analyses complemented each other in depicting underlying spatiotemporal clustering risk, giving detailed space-time spread information at district level. This daily analysis could be valuable insight into real-time reporting of transmission intensity, and alert for the public to avoid visiting the high-risk areas during the pandemic. The spatiotemporal transmission risk pattern could be used to monitor the spread of the pandemic.

Keywords: COVID-19; LISA; Moran's I; SaTScan; space-time scan; spatial autocorrelation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / epidemiology
  • Humans
  • Malaysia / epidemiology
  • Pandemics
  • Retrospective Studies
  • Spatial Analysis