Label-Free Optical Analysis of Biomolecules in Solid-State Nanopores: Toward Single-Molecule Protein Sequencing

ACS Photonics. 2022 Mar 16;9(3):730-742. doi: 10.1021/acsphotonics.1c01825. Epub 2022 Feb 25.

Abstract

Sequence identification of peptides and proteins is central to proteomics. Protein sequencing is mainly conducted by insensitive mass spectroscopy because proteins cannot be amplified, which hampers applications such as single-cell proteomics and precision medicine. The commercial success of portable nanopore sequencers for single DNA molecules has inspired extensive research and development of single-molecule techniques for protein sequencing. Among them, three challenges remain: (1) discrimination of the 20 amino acids as building blocks of proteins; (2) unfolding proteins; and (3) controlling the motion of proteins with nonuniformly charged sequences. In this context, the emergence of label-free optical analysis techniques for single amino acids and peptides by solid-state nanopores shows promise for addressing the first challenge. In this Perspective, we first discuss the current challenges of single-molecule fluorescence detection and nanopore resistive pulse sensing in a protein sequencing. Then, label-free optical methods are described to show how they address the single-amino-acid identification within single peptides. They include localized surface plasmon resonance detection and surface-enhanced Raman spectroscopy on plasmonic nanopores. Notably, we report new data to show the ability of plasmon-enhanced Raman scattering to record and discriminate the 20 amino acids at a single-molecule level. In addition, we discuss briefly the manipulation of molecule translocation and liquid flow in plasmonic nanopores for controlling molecule movement to allow high-resolution reading of protein sequences. We envision that a combination of Raman spectroscopy with plasmonic nanopores can succeed in single-molecule protein sequencing in a label-free way.

Publication types

  • Review