LncRNA NCK1-AS1 Aggravates Hepatocellular Carcinoma by the miR-22-3p/YARS Axis to Activate PI3K/AKT Signaling

J Gastrointestin Liver Dis. 2022 Mar 19;31(1):48-59. doi: 10.15403/jgld-4077.

Abstract

Background: Hepatocellular carcinoma (HCC) is frequently diagnosed at late stages when curative treatments are no more appliable. Many studies have proved the active role of long non-coding RNAs (lncRNAs) in cancers' biology; here, the functional role of lncRNA NCK1-AS1 in HCC was identified.

Methods: Gene expression in tumor tissues of HCC was evaluated by examining online databases and 88 collected HCC samples from our hospital. The interactions of miR-22-3p with NCK1-AS1 and tyrosyl-tRNA synthetase (YARS) were tested by conducting bioinformatics analysis, luciferase report, and RNA pulldown experiments. CCK-8, colony formation, flow cytometry, wound healing, transwell experiments were used to dissect the role of the NCK1-AS1/miR-22-3p/YARS axis in HCC.

Results: NCK1-AS1 was overexpressed in HCC cells and tissues. Functional assays depicted that depletion of NCK1-AS1 hampered malignant character of HCC cells. NCK1-AS1 controlled the availability of miR-22-3p, resulting in YARS upregulation. YARS was found to have a clinical value for HCC diagnosis. Moreover, rescue experiments revealed that miR-22-3p inhibition or YARS overexpression partially blocked the function of NCK1-AS1 deficiency in HCC cells. As for the downstream signaling pathway, we discovered that NCK1-AS1 activated PI3K/AKT signaling by the miR-22-3p/YARS axis.

Conclusion: The present study verified that NCK1-AS1 could promote HCC progression via the miR-22-3p/YARS axis to activate PI3K/AKT signaling.

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Carcinoma, Hepatocellular* / pathology
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms* / pathology
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Oncogene Proteins
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA, Long Noncoding* / genetics
  • Signal Transduction
  • Tyrosine-tRNA Ligase* / genetics
  • Tyrosine-tRNA Ligase* / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • MIRN22 microRNA, human
  • MicroRNAs
  • Nck protein
  • Oncogene Proteins
  • RNA, Long Noncoding
  • Proto-Oncogene Proteins c-akt
  • Tyrosine-tRNA Ligase