C-O band structure modified broad spectral response carbon nitride with enhanced electron density in photocatalytic peroxymonosulfate activation for bisphenol pollutants removal

J Hazard Mater. 2022 Jun 15:432:128663. doi: 10.1016/j.jhazmat.2022.128663. Epub 2022 Mar 11.

Abstract

Here, a simple one-step calcination method uses glycolic acid (GA) and urea to synthesize C-O band structure modified carbon nitride with broad spectral response, which is used to construct a peroxymonosulfate/visible light (PMS/vis) system. The solid-state 13C NMR proved that C-O band structure was successfully introduced into the carbon nitride. Density functional theory (DFT) calculation show that the introduction of C-O band structure shortens the band gap of 0.05 g GA modified CN (0.05 GA-CN). Besides, Ultraviolet photoelectron spectroscopy (UPS) further illustrate that the 0.05 GA-CN has a higher charge density and promotes the degradation of pollutants. In PMS/vis system, 0.05 GA-CN can completely degrade bisphenol A (BPA) within 36 min. In addition, 0.05 GA-CN can also degrade bisphenol E (BPE) and bisphenol F (BPF). The cyclic voltammetry (CV) curve show that the introduction of C-O band structure enhances the activation ability of PMS. At the same time, 0.05 GA-CN/PMS has enhanced the activity of degrading BPA under blue light (450-462 nm), green light (510-520 nm) and red light (610-625 nm). This research provides a new method to synthesize carbon nitride with enhanced electron density for degradation of bisphenol pollutants in PMS/vis system.

Keywords: Bisphenols; Carbon nitride; Degradation; Peroxymonosulfate; Photocatalysis.