Extracellular targeting of Neurospora crassa cell wall and secreted glycoproteins by DFG-5

Fungal Genet Biol. 2022 May:160:103686. doi: 10.1016/j.fgb.2022.103686. Epub 2022 Mar 17.

Abstract

The formation of a cell wall is vital for the survival and growth of a fungal cell. Fungi express members of the GH76 family of α-1,6-mannanases which play an important role in cell wall biogenesis. In this report we characterize the Neurospora crassa DFG-5 α-1,6-mannanase and demonstrate that it binds to the α-1,6-mannose backbone of an N-linked galactomannan found on cell wall glycoproteins. We show that DFG-5 has an enzymatic activity and provide evidence that it processes the α-1,6-mannose backbone of the N-linked galactomannan. Site-directed mutagenesis and complementation experiments show that D116 and D117 are located at the DFG-5 active site. D76 and E130, which are located in a groove on the opposite side of the protein, are also important for enzyme function. Cell wall glycoproteins co-purify with DFG-5 demonstrating a specific association between DFG-5 and cell wall glycoproteins. DFG-5 is able to discriminate between cell wall and secreted glycoproteins, and does not bind to the N-linked galactomannans present on secreted glycoproteins. DFG-5 plays a key role in targeting extracellular glycoproteins to their final destinations. By processing the galactomannans on cell wall proteins, DFG-5 targets them for cell wall incorporation by lichenin transferases. The N-linked galactomannans on secreted proteins are not processed by DFG-5, which targets these proteins for release into the extracellular medium.

Keywords: Cell wall biosynthesis; DFG5; Extracellular protein targeting; GH76 α-1,6-mannanase; Galactomannan; Protein secretion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Wall / metabolism
  • Glycoproteins / genetics
  • Glycoproteins / metabolism
  • Mannose / analysis
  • Mannose / metabolism
  • Neurospora crassa*

Substances

  • Glycoproteins
  • Mannose