Structure and mechanism of a methyltransferase ribozyme

Nat Chem Biol. 2022 May;18(5):556-564. doi: 10.1038/s41589-022-00982-z. Epub 2022 Mar 17.

Abstract

Known ribozymes in contemporary biology perform a limited range of chemical catalysis, but in vitro selection has generated species that catalyze a broader range of chemistry; yet, there have been few structural and mechanistic studies of selected ribozymes. A ribozyme has recently been selected that can catalyze a site-specific methyl transfer reaction. We have solved the crystal structure of this ribozyme at a resolution of 2.3 Å, showing how the RNA folds to generate a very specific binding site for the methyl donor substrate. The structure immediately suggests a catalytic mechanism involving a combination of proximity and orientation and nucleobase-mediated general acid catalysis. The mechanism is supported by the pH dependence of the rate of catalysis. A selected methyltransferase ribozyme can thus use a relatively sophisticated catalytic mechanism, broadening the range of known RNA-catalyzed chemistry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Catalysis
  • Methyltransferases / metabolism
  • Nucleic Acid Conformation
  • RNA, Catalytic* / metabolism

Substances

  • RNA, Catalytic
  • Methyltransferases