Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision

Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2109717119. doi: 10.1073/pnas.2109717119. Epub 2022 Mar 17.

Abstract

SignificanceTo move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes' optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes' whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies' depth-perception dynamics, limits, and visual behaviors.

Keywords: active sampling; adaptive optics; compound eyes; stereovision.

MeSH terms

  • Animals
  • Depth Perception*
  • Drosophila*
  • Eye
  • Vision Disparity
  • Vision, Ocular