A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran

Sci Rep. 2022 Mar 16;12(1):4505. doi: 10.1038/s41598-022-08575-5.

Abstract

Petrophysical rock typing (PRT) and permeability prediction are of great significance for various disciplines of oil and gas industry. This study offers a novel, explainable data-driven approach to enhance the accuracy of petrophysical rock typing via a combination of supervised and unsupervised machine learning methods. 128 core data, including porosity, permeability, connate water saturation (Swc), and radius of pore throats at 35% mercury injection (R35) were obtained from a heterogeneous carbonate reservoir in Iran and used to train a supervised machine learning algorithm called Extreme Gradient Boosting (XGB). The algorithm output was a modified formation zone index (FZIM*), which was used to accurately estimate permeability (R2 = 0.97) and R35 (R2 = 0.95). Moreover, FZIM* was combined with an unsupervised machine learning algorithm (K-means clustering) to find the optimum number of PRTs. 4 petrophysical rock types (PRTs) were identified via this method, and the range of their properties was discussed. Lastly, shapely values and parameter importance analysis were conducted to explain the correlation between each input parameter and the output and the contribution of each parameter on the value of FZIM*. Permeability and R35 were found to be most influential parameters, where Swc had the lowest impact on FZIM*.