BuFeiXiaoJiYin ameliorates the NLRP3 inflammation response and gut microbiota in mice with lung cancer companied with Qi-yin deficiency

Cancer Cell Int. 2022 Mar 15;22(1):121. doi: 10.1186/s12935-022-02543-9.

Abstract

Introduction: NLRP3 inflammasome responses and gut microbiota have been shown an important role in lung cancer, however, the relationship between gut microbiota and NLRP3 inflammasome responses in lung cancer with Qi-yin deficiency remains elusive.

Methods: To investigate the effect of the traditional Chinese medicine BuFeiXiaoJiYin (BFXJY) on NLRP3 inflammasome responses and dysbiosis in lung cancer with Qi-yin deficiency, the female BALB/cA-nu mice were treated with LPS and ATP to induce inflammation, and were intragastrically treated with warm Chinese medicine and smoked with shavings to induce Qi-yin deficiency, as well as were injected with 1 × 107/ml A549 cells to simulate lung cancer. Then the three different doses of BuFeiXiaoJiYin (BFXJY) and positive control (CRID3) were used for intervention in mice for 27 consecutive days. Then, we estimated the protection effect of BFXJY on lung cancer mice with Qi-yin deficiency, through deterring tumor growth, NLRP3 inflammasome, PKC signaling, and homeostasis of gut microbiota.

Results: In this study, we found that BFXJY could inhibit the tumor growth in lung cancer with Qi-yin deficiency by reducing the production of IL-1β and IL-18 and inhibiting NLRP3 inflammasome activation, which might be associated with the inhibition of PKC signaling. Furthermore, BFXJY could promote microbial diversity and balance the microbial composition changes induced by inflammation and Qi-yin deficiency in lung cancer.

Conclusion: BuFeiXiaoJiYin ameliorates the NLRP3 inflammation response and gut microbiota in mice with lung cancer companied with Qi-yin deficiency. Our study provides a theoretical basis for the clinical development of therapeutic drugs targeting to treat lung cancer.

Keywords: BuFeiXiaoJiYin; Gut microbiota; Lung cancer; NLRP3 inflammation response; Qi-yin deficiency.