Identification of hub genes and pathways in bladder cancer using bioinformatics analysis

Am J Clin Exp Urol. 2022 Feb 15;10(1):13-24. eCollection 2022.

Abstract

Bladder cancer (BC) is the most common malignant tumor of urinary tract system. The aim of this study was to investigate the genetic signatures of bladder cancer (BC) and identify its potential molecular mechanisms. The gene expression profiles of GSE3167 (50 samples, including 41BC and 9 non-cancerous urothelial cells) was downloaded from the GEO database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) were performed to identify enriched pathways, and a protein-protein interaction (PPI) network was used to identify hub genes and for module analysis. Moreover, we conducted expression and survival analyses to screen and validate hub genes. In total, 1528 DEGs were identified in bladder cancer (BC), including 1212 up-regulated genes and 316 down-regulated genes. Up-regulated differentially expressed genes (DEGs) were significantly enriched in negative regulation of macromolecule metabolic process, macromolecule catabolic process, proteolysis and regulation of cell death, while the down-regulated differentially expressed genes (DEGs) were mainly involved in cell surface receptor linked signal transduction, ion transport, cell-cell signaling and defense response. The top 10 hub genes with the highest degrees were selected from the PPI network. These genes included HSP90AA1, MYH11, MYL9, CNN1, ACTC1, RAN, ENO1, HNRNPC, ACTG2 and YWHAZ. From sub-networks, we found these genes were involved in the proteasome, pathways in cancer and cell cycle. Hence, the identified DEGs and hub genes may be beneficial to elucidate the mechanisms underlying BC.

Keywords: Bladder cancer; differentially expressed genes; microarray analysis; protein-protein interaction network.