Self-assembly of two-dimensional, amorphous materials on a liquid substrate

Phys Rev E. 2022 Feb;105(2):L022601. doi: 10.1103/PhysRevE.105.L022601.

Abstract

Recent experimental utilization of liquid substrate in the production of two-dimensional crystals, such as graphene, together with a general interest in amorphous materials, raises the following question: is it beneficial to use a liquid substrate to optimize amorphous material production? Inspired by epitaxial growth, we use a two-dimensional coarse-grained model of interacting particles to show that introducing a motion for the substrate atoms improves the self-assembly process of particles that move on top of the substrate. We find that a specific amount of substrate liquidity (for a given sample temperature) is needed to achieve optimal self-assembly. Our results illustrate the opportunities that the combination of different degrees of freedom provides to the self-assembly processes.