Hydroxypicolinic acid tethered on magnetite core-silica shell (HPCA@SiO2@Fe3O4) as an effective and reusable adsorbent for practical Co(II) recovery

Chemosphere. 2022 Jul:298:134301. doi: 10.1016/j.chemosphere.2022.134301. Epub 2022 Mar 11.

Abstract

The soaring demand and future supply risk for cobalt (Co) necessitate more efficient adsorbents for its recycling from electronic wastes, as a cheaper and less hazardous option for its production. Herein, a magnetic adsorbent covalently tethered with 5-hydroxypicolinic acid (HPCA) as Co(II) ligand was developed. The magnetic component (Fe3O4) was protected with silica (SiO2), then silanized with chloroalkyl linker and subsequently functionalized with HPCA via SN2 nucleophilic substitution (HPCA@SiO2@Fe3O4). Results from FTIR, TGA, EA, and XPS confirm the successful adsorbent preparation with high HPCA loading of 2.62 mmol g-1. TEM-EDS reveal its imperfect spherical morphology with ligands well-distributed on its surface. HPCA@SiO2@Fe3O4 is hydrophilic, water-dispersible and magnetically retrievable, which is highly convenient for its recovery. The Co(II) capture on HPCA@SiO2@Fe3O4 involves monodentate coordination with carboxylate (COO-) and lone pair acceptance from pyridine (aromatic -N = ) moiety of HPCA, with minor interaction from acidic silanols (Si-O-). The binding occurs at 2 HPCA: 1 Co(II) ratio, that follows the Sips isotherm model with competitive Qmax = 92.35 mg g-1 and pseudo-second order kinetics (k2 = 0.0042 g mg-1 min-1). In a simulated LIB liquid waste, HPCA@SiO2@Fe3O4 preferentially captures Co(II) over Li(I) with αLi(I)Co(II)=166 and Mn(II) with αMn(II)Co(II)=55, which highlights the importance of HPCA for Co(II) recovery. Silica protection of Fe3O4 rendered the adsorbent chemically stable in acidic thiourea solution for its regeneration by preventing the deterioration of the magnetic component. Covalent functionalization averted ligand loss, which allowed HPCA@SiO2@Fe3O4 to deliver consistent and reversible adsorption/desorption performance. Overall results demonstrate the potential of HPCA@SiO2@Fe3O4 as a competitive and practical adsorbent for Co(II) recovery in liquid waste sources.

Keywords: Adsorption; Cobalt; Covalent functionalization; Magnetic adsorbent; Picolinic acid; Waste recycling.

MeSH terms

  • Adsorption
  • Cobalt
  • Ferrosoferric Oxide*
  • Ligands
  • Silicon Dioxide*

Substances

  • Ligands
  • Cobalt
  • Silicon Dioxide
  • Ferrosoferric Oxide