How residential energy consumption has changed due to COVID-19 pandemic? An agent-based model

Sustain Cities Soc. 2022 Jun:81:103832. doi: 10.1016/j.scs.2022.103832. Epub 2022 Mar 10.

Abstract

Integrating occupant behavior with residential energy use for detailed energy quantification has attracted research attention. However, many of the available models fail to capture unseen behavior, especially in unprecedented situations such as COVID-19 lockdowns. In this study, we adopted a hybrid approach consisting of agent-based simulation, machine learning and energy simulation techniques to simulate the urban energy consumption considering the occupants' behavior. An agent-based model is developed to simulate the in-home and out-of-home activities of individuals. Separate models were developed to recognize physical characteristics of residential dwellings, including heating equipment, source of energy, and thermostat setpoints. The developed modeling framework was implemented as a case study for the Central Okanagan region of British Columbia, where alternative COVID-19 scenarios were tested. The results suggested that during the pandemic, the daily average in-home-activity duration (IHD) increased by approximately 80%, causing the energy consumption to increase by around 29%. After the pandemic, the average daily IHD is expected to be higher by approximately 32% compared with the pre-pandemic situation, which translates to an approximately 12% increase in energy consumption. The results of this study can help us understand the implications of the imposed COVID-19 lockdown with respect to energy usage in residential locations.

Keywords: Agent-based model; COVID-19; In-home activities; Machine learning; Residential energy microsimulation.