Structural connectivity in ventral language pathways characterizes non-verbal autism

Brain Struct Funct. 2022 Jun;227(5):1817-1829. doi: 10.1007/s00429-022-02474-1. Epub 2022 Mar 14.

Abstract

Language capacities in autism spectrum disorders (ASD) range from normal scores on standardized language tests to absence of functional language in a substantial minority of 30% of individuals with ASD. Due to practical difficulties of scanning at this severe end of the spectrum, insights from MRI are scarce. Here we used manual deterministic tractography to investigate, for the first time, the integrity of the core white matter tracts defining the language connectivity network in non-verbal ASD (nvASD): the three segments of the arcuate (AF), the inferior fronto-occipital (IFOF), the inferior longitudinal (ILF) and the uncinate (UF) fasciculi, and the frontal aslant tract (FAT). A multiple case series of nine individuals with nvASD were compared to matched individuals with verbal ASD (vASD) and typical development (TD). Bonferroni-corrected repeated measure ANOVAs were performed separately for each tract-Hemisphere (2:Left/Right) × Group (3:TD/vASD/nvASD). Main results revealed (i) a main effect of group consisting in a reduction in fractional anisotropy (FA) in the IFOF in nvASD relative to TD; (ii) a main effect of group revealing lower values of radial diffusivity (RD) in the long segment of the AF in nvASD compared to vASD group; and (iii) a reduced volume in the left hemisphere of the UF when compared to the right, in the vASD group only. These results do not replicate volumetric differences of the dorsal language route previously observed in nvASD, and instead point to a disruption of the ventral language pathway, in line with semantic deficits observed behaviourally in this group.

Keywords: Autism; DWI; Language; MRI; Non-verbal; Tractography.

MeSH terms

  • Autistic Disorder* / diagnostic imaging
  • Diffusion Tensor Imaging / methods
  • Humans
  • Language
  • Neural Pathways / diagnostic imaging
  • White Matter* / diagnostic imaging