Prevention of tick-borne diseases: challenge to recent medicine

Biologia (Bratisl). 2022;77(6):1533-1554. doi: 10.1007/s11756-021-00966-9. Epub 2022 Mar 9.

Abstract

Abstract: Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population.

Highlights: • Tick-borne diseases have an increasing incidence due to climate change and increased human migration• To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector• To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases• Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design.

Keywords: COVID-19; Neuropeptides; Tick-borne disease; Vaccine; Vector.

Publication types

  • Review