Hypoxic Microenvironment-Induced Reduction in PTEN-L Secretion Promotes Non-Small Cell Lung Cancer Metastasis through PI3K/AKT Pathway

Evid Based Complement Alternat Med. 2022 Mar 2:2022:6683104. doi: 10.1155/2022/6683104. eCollection 2022.

Abstract

Objective: Lung cancer is the leading cause of cancer-related deaths worldwide. The aim of this study was to investigate the effects of hypoxic microenvironment on PTEN-L secretion and the effects of PTEN-L on the metastasis of non-small cell lung cancer (NSCLC) and the potential mechanisms.

Methods: The expression levels of PTEN-L in NSCLC tissues, cells, and cell culture media were detected. The transfection of PTEN-L overexpression construct or HIF-1α-siRNAs was conducted to manipulate the expression of PTEN-L or HIF-1α. NSCLC cells were introduced into 200 μM CoCl2 medium for 72 hours under 37°C to simulate hypoxia. The proliferation and apoptosis of the A549 cells were determined by the Cell Counting Kit-8 assay and Annexin V-FITC/PI-stained flow cytometry assay, respectively. Wound healing assay and transwell invasion assay were used to measure the migration and invasion of A549 cells. The protein expression of PTEN, PTEN-L, PI3K/AKT pathway-related proteins, and HIF-1α was detected by Western blot.

Results: PTEN and PTEN-L are downregulated in lung cancer tissues and cells. The protein expression of PTEN-L in the culture medium of lung cancer cell lines is decreased. The hypoxic microenvironment inhibits PTEN-L secretion. The low level of PTEN-L promotes cell proliferation, migration, and invasion, as well as inhibits apoptosis of A549 cells. The overexpression of PTEN-L attenuated the activation of the PI3K/AKT pathway by the hypoxic microenvironment. The knockdown of HIF-1α upregulates PTEN-L secretion under hypoxia.

Conclusions: The hypoxic microenvironment inhibits PTEN-L secretion and thus activates PI3K/AKT pathway to induce proliferation, migration, and invasion promotion, and apoptosis inhibition in NSCLC cells.