Effects of oxygen fertilization on damage reduction in flooded snap bean (Phaseolus vulgaris L.)

Sci Rep. 2022 Mar 11;12(1):4282. doi: 10.1038/s41598-022-08165-5.

Abstract

Flooding is one of the major abiotic stresses for vegetable production in Florida. Hydroponic and pot trials were conducted with snap bean to evaluate the effects of oxygen fertilization on the biochemical and physiological status of flooded snap bean plants. There were three treatments in the hydroponic trials were: (1) flooded (control), (2) bubble aeration with ambient air, and (3) hydrogen peroxide (H2O2) applied at the beginning of the trial. Plant health was evaluated by determining nitrogen (N) and phosphorus (P) uptake rates. The greenhouse pot trials were used to quantify the effects of three different application rates of solid oxygen fertilizers as calcium peroxide (CaO2) and magnesium peroxide (MgO2). The results showed that plant N and P uptake rates were significantly greater (p < 0.05) with H2O2 than without H2O2. The N uptake rates with H2O2 were like that of those with bubbling. The uptake rate of NH4+ was significantly greater than that of NO3- with the bubbling and H2O2 conditions, but the uptake rate of NO3- was significantly greater than that of NH4+ in the flooding condition. The plant height, leaf greenness, shoot biomass, and yield were all significantly greater with CaO2 or MgO2 than without either solid oxygen fertilizer. The minimum damage of flooded snap bean was found with 2 g CaO2 or 4 g MgO2 per pot. These results indicated that oxygen fertilization may potentially improve yield of flooded snap bean plants.

MeSH terms

  • Fertilization
  • Fertilizers
  • Hydrogen Peroxide
  • Magnesium Oxide
  • Oxygen
  • Phaseolus* / physiology

Substances

  • Fertilizers
  • Magnesium Oxide
  • Hydrogen Peroxide
  • Oxygen