Epigenome-wide association study and epigenetic age acceleration associated with cigarette smoking among Costa Rican adults

Sci Rep. 2022 Mar 11;12(1):4277. doi: 10.1038/s41598-022-08160-w.

Abstract

Smoking-associated DNA methylation (DNAm) signatures are reproducible among studies of mostly European descent, with mixed evidence if smoking accelerates epigenetic aging and its relationship to longevity. We evaluated smoking-associated DNAm signatures in the Costa Rican Study on Longevity and Healthy Aging (CRELES), including participants from the high longevity region of Nicoya. We measured genome-wide DNAm in leukocytes, tested Epigenetic Age Acceleration (EAA) from five clocks and estimates of telomere length (DNAmTL), and examined effect modification by the high longevity region. 489 participants had a mean (SD) age of 79.4 (10.8) years, and 18% were from Nicoya. Overall, 7.6% reported currently smoking, 35% were former smokers, and 57.4% never smoked. 46 CpGs and five regions (e.g. AHRR, SCARNA6/SNORD39, SNORA20, and F2RL3) were differentially methylated for current smokers. Former smokers had increased Horvath's EAA (1.69-years; 95% CI 0.72, 2.67), Hannum's EAA (0.77-years; 95% CI 0.01, 1.52), GrimAge (2.34-years; 95% CI1.66, 3.02), extrinsic EAA (1.27-years; 95% CI 0.34, 2.21), intrinsic EAA (1.03-years; 95% CI 0.12, 1.94) and shorter DNAmTL (- 0.04-kb; 95% CI - 0.08, - 0.01) relative to non-smokers. There was no evidence of effect modification among residents of Nicoya. Our findings recapitulate previously reported and novel smoking-associated DNAm changes in a Latino cohort.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acceleration
  • Adult
  • Aged
  • Cigarette Smoking* / adverse effects
  • Cigarette Smoking* / genetics
  • Costa Rica / epidemiology
  • DNA
  • DNA Methylation
  • Epigenesis, Genetic
  • Epigenome*
  • Hispanic or Latino
  • Humans

Substances

  • DNA