Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing

ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13186-13195. doi: 10.1021/acsami.1c20680. Epub 2022 Mar 11.

Abstract

Formaldehyde (HCHO) sensing plays a critical role for indoor environment monitoring in smart home systems. Inspired by the unique hierarchical structure of cactus, we have prepared a ZnO/ANS-rGO composite for room-temperature (RT) HCHO sensing, through assembling hollow cactus-like ZnO nanorods with 5-aminonaphthalene-1-sulfonic acid (ANS)-modified graphene nanosheets in a facile and template-free manner. Interestingly, it was found that the ZnO morphology could be simply tuned from flower clusters to hollow cactus-like nanostructures, along with the increase of the reaction time during the assembly process. The ZnO/ANS-rGO-based sensors exhibited superior RT HCHO-sensing performance with an ultrahigh response (68%, 5 ppm), good repeatability, long-term stability, and an outstanding practical limit of detection (LOD: 0.25 ppm) toward HCHO, which is the lowest practical LOD reported so far. Furthermore, for the first time, a 30 m3 simulation test cabinet was adapted to evaluate the practical gas-sensing performance in an indoor environment. As a result, an instantaneous response of 5% to 0.4 ppm HCHO was successfully achieved in the simulation test. The corresponding sensing mechanism was interpreted from two aspects including high charge transport capability of ANS-rGO and the distinct gas adsorbability derived from nanostructures, respectively. The combination of a biomimetic hierarchical structure and supramolecular assembly provides a promising strategy to design HCHO-sensing materials with high practicability.

Keywords: ZnO; formaldehyde sensing; graphene; hollow cactus-like nanostructure; room temperature.