Novel Amylin Analogues Reduce Amyloid-β Cross-Seeding Aggregation and Neurotoxicity

J Alzheimers Dis. 2022;87(1):373-390. doi: 10.3233/JAD-215339.

Abstract

Background: Type 2 diabetes related human islet amyloid polypeptide (hIAPP) plays a dual role in Alzheimer's disease (AD). hIAPP has neuroprotective effects in AD mouse models whereas, high hIAPP concentrations can promote co-aggregation with amyloid-β (Aβ) to promote neurodegeneration. In fact, both low and high plasma hIAPP concentration has been associated with AD. Therefore, non-aggregating hIAPP analogues have garnered interest as a treatment for AD. The aromatic amino acids F23 and I26 in hIAPP have been identified as the key residues involved in self-aggregation and Aβ cross-seeding.

Objective: Three novel IAPP analogues with single and double alanine mutations (A1 = F23, A2 = I26, and A3 = F23 + I26) were assessed for their ability to aggregate, modulate Aβ oligomer formation, and alter neurotoxicity.

Methods: A range of biophysical methods including Thioflavin-T, gel electrophoresis, photo-crosslinking, circular dichroism combined with cell viability assays were utilized to assess protein aggregation and toxicity.

Results: All IAPP analogues showed significantly less self-aggregation than hIAPP. Co-aggregated Aβ42-A2 and A3 also showed reduced aggregation compared to Aβ42-hIAPP mixtures. Self- and co-oligomerized A1, A2, and A3 exhibited random coil conformations with reduced beta sheet content compared to hIAPP and Aβ42-hIAPP aggregates. A1 was toxic at high concentrations compared to A2 and A3. However, co-aggregated Aβ42-A1, A2, or A3 showed reduced neurotoxicity compared to Aβ42, hIAPP, and Aβ42-hIAPP aggregates.

Conclusion: These findings confirm that hIAPP analogues with non-aromatic residues at positions 23 and 26 have reduced self-aggregation and the ability to neutralize Aβ42 toxicity. This warrants further characterization of their protective effects in pre-clinical AD models.

Keywords: Aggregation; Alzheimer’s disease; amylin analogue; amyloid-beta; human islet amyloid polypeptide (hIAPP).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / genetics
  • Amyloid
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Diabetes Mellitus, Type 2* / metabolism
  • Humans
  • Islet Amyloid Polypeptide / metabolism
  • Mice
  • Neurotoxicity Syndromes*
  • Protein Aggregates

Substances

  • Amyloid
  • Amyloid beta-Peptides
  • Islet Amyloid Polypeptide
  • Protein Aggregates